Can We Survive on Mars ??

mixanikos365

 

CAN MARS BE INHABITED??
Of all the planets in the Solar System, the seasons of Mars are the most similar to those of Earth, due to the similar axial tilt of the two planets. The duration of the Martian seasons is almost twice that of the Earth's seasons, because the greater distance of Mars from the Sun makes the Martian year last almost two Earth years. The surface temperatures of Mars range from approximately −110 °C in winter to 35 °C in summer at the equator. The large difference in temperatures is due to the planet's thin atmosphere, which cannot store much solar heat, due to the low atmospheric pressure (about 1% compared to Earth), and due to the low thermal inertia of the Martian soil. Mars is 1.52 times farther from the Sun than Earth, resulting in it receiving only 43% of the sunlight compared to Earth.
HOWEVER
Mars lost its magnetosphere 4 billion years ago, and so the solar wind interacts directly with the planet's ionosphere, removing atoms from it.
The atmosphere of Mars consists of 95.97% carbon dioxide, 1.93% argon, 1.89% nitrogen, traces of oxygen, carbon monoxide and water vapor. It is very thin and the pressure at the planet's surface averages 0.6 kPa, less than one centimeter of that at the Earth's surface (101.3 kPa). In practice, it is equal to the atmospheric pressure at an altitude of 35 kilometers above the Earth's surface. Consequently, an astronaut will definitely need a spacesuit in order to walk on its surface. Due to the thin atmosphere, the speed of sound is low, and sounds do not propagate very far, only a few dozen meters. Thus, Mars, in addition to being a desert, is also a silent planet.
The low density of the atmosphere has other consequences: the winds are not particularly strong, but since the dust covering the planet's surface is quite fine, sandstorms are not a rare phenomenon. In extreme cases, they can cover a very large part of the planet.
The appearance of small tornadoes (dust devils) that transport dust onto the planet's surface is also frequent. Since it is not a very dynamic atmosphere, the climate of Mars is quite predictable and repeats itself in cycles lasting almost two Earth years, that is, as long as its orbit around the Sun.
The Martian atmosphere also contains thin clouds of carbon dioxide, which are more common at night and dawn, and thin clouds of water crystals when the planet is closer to the sun and its polar ice evaporates.
Due to the different composition of the atmosphere compared to Earth's and its minimal density, combined with the abundant suspended dust, the color of the sky on Mars is not blue; it is a reddish pink that is somewhat closer in hue to salmon pink.
Liquid water cannot exist on Mars due to the low atmospheric pressure, which is less than 1% of Earth's, except at the lowest topographic levels for short periods. The poles of Mars appear to be made mainly of water. The volume of frozen water at the south pole, if it were to melt, would be enough to cover the planet's surface to a depth of 11 meters. Large amounts of ice are believed to be trapped in the Martian cryosphere. Radar data from Mars Express and the Mars Reconnaissance Orbiter show large amounts of ice at both poles, as well as in the middle regions (between the equator and the pole).

Can We Survive on Mars? | Unexplored | BBC Earth Science


THE ABSENCE OF OXYGEN MAKES LIFE ON MARS IMPOSSIBLE WITHOUT OXYGEN-PRODUCING METABOLISM
YET The dream of transforming/modifying Mars so that it becomes habitable (a process known as terraforming) is one of the most ambitious in science.
This has been the subject of much speculation by science fiction writers and scientists, such as Carl Sagan, who in a 1971 scientific paper presented the theory that the evaporation of the icy masses at the planet's north pole would lead to a thickening of the atmosphere, higher temperatures through the greenhouse effect, and an increased likelihood of liquid water.
Sagan's idea was taken seriously by many scientists, but the main question was: Are there enough greenhouse gases and water on the Red Planet to raise the atmospheric pressure to levels comparable to Earth?
In 2018, researchers from the University of Colorado, Boulder, and Northern Arizona University, funded by NASA, discovered that processing all the sources and resources on Mars would increase the atmospheric pressure to just 7% of that of Earth - so, practically, the dream of terraforming Mars seemed to remain a dream.
However, the data may change.


But that may be changing, thanks to work by researchers at Harvard University, NASA's Jet Propulsion Lab, and the University of Edinburgh. The idea is this: Instead of trying to change the entire planet, why not take a more local approach?
According to the researchers, areas of the Martian surface could be made habitable thanks to a material (silica aerogel) that mimics the greenhouse effect on Earth. Through experiments and models, the researchers show that a 2-3 cm thick "shield" of silica aerogel could allow enough light to pass through for photosynthesis, block dangerous ultraviolet radiation, and raise temperatures below sufficiently above the melting point of water - all without requiring an internal energy source.
The scientific article in question was published in Nature Astronomy. “This local approach to making Mars habitable is much more achievable than modifying the atmosphere on a planetary scale,” says Robin Wordsworth, assistant professor of environmental sciences and engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Department of Earth and Planetary Sciences. “Unlike previous ideas for making Mars habitable, this is something that can be developed and tested systematically with materials and technology that we already have.”
“Mars is the most habitable planet in our solar system other than Earth,” says Laura Kerber, a researcher at NASA’s JPL. “But it remains a hostile world for many life forms. A system that would create small islands of habitability would allow us to transform Mars in a controlled and scalable way.”
Aerogel is a Styrofoam-like solid that is 99% air—i.e., extremely lightweight. It can also block heat transfer, which makes it a very effective insulating material, and for that reason, it is used in all of NASA’s Mars rovers. It is also transparent, allowing visible light to pass through while blocking, as mentioned above, ultraviolet radiation. Most aerogel is made from silica, which is also found in glass. According to the relevant research, the material is so effective that it could help warm even in the harsh Martian winters. The next step, according to Wordsworth, is to take the relevant experiments outside the laboratory and to do them in conditions closer to Martian reality, such as in the Atacama Desert in Chile or the McMurdo Dry Valleys in Antarctica.


ΜΠΟΡΕΊ ΝΑ ΚΑΤΗΚΗΘΕΙ Ο ΑΡΗΣ ??
Από όλους τους πλανήτες του Ηλιακού συστήματος, οι εποχές του Άρη είναι αυτές που μοιάζουν πιο πολύ με την Γη, λόγω της παρόμοιας αξονικής κλίσης των δύο πλανητών. Η διάρκεια των Αρειανών εποχών είναι σχεδόν διπλάσια από τις εποχές της Γης, διότι η μεγαλύτερη απόσταση του Άρη από τον Ήλιο κάνει το Αρειανό έτος να διαρκεί σχεδόν όσο δύο Γήινα χρόνια. Οι θερμοκρασίες της επιφάνειας του Άρη κυμαίνονται κατά προσέγγιση από −110 °C τον χειμώνα έως 35 °C το καλοκαίρι στον ισημερινό. Η μεγάλη διαφορά στις θερμοκρασίες γίνεται επειδή λόγω της μικρής ατμόσφαιρας του πλανήτη η οποία δεν μπορεί να αποθηκεύσει πολύ ηλιακή θερμότητα, λόγω της χαμηλής ατμοσφαιρικής πίεσης (περίπου το 1% σε σχέση με την Γη) και λόγω της χαμηλής θερμικής αδράνειας του Αρειανού εδάφους. Ο Άρης βρίσκεται 1,52 φορές πιο μακριά από τον Ήλιο σε σχέση με την Γη, καταλήγοντάς τον να λαμβάνει μόνο το 43% του ηλιακού φωτός σε σχέση με την Γη.
ΟΜΩΣ
Ο Άρης έχασε τη μαγνητόσφαιρά του πριν από 4 δις έτη, και έτσι ο ηλιακός άνεμος αλληλεπιδρά απευθείας με την ιονόσφαιρα του πλανήτη, απομακρύνοντας άτομα από αυτήν.
Η ατμόσφαιρα του Άρη αποτελείται κατά 95,97% από διοξείδιο του άνθρακα, 1,93% αργό, 1,89% άζωτο, ίχνη οξυγόνου, μονοξειδίου του άνθρακα και υδρατμών. Είναι πολύ αραιή και η πίεση στην επιφάνεια του πλανήτη φτάνει κατά μέσο όρο τα 0,6 kPa, δηλαδή λιγότερο από το ένα εκατοστό αυτής στην επιφάνεια της Γης (101,3 kPa). Πρακτικώς, είναι ίση με την ατμοσφαιρική πίεση στα 35 χιλιόμετρα υψόμετρο από την επιφάνεια της Γης. Κατά συνέπεια, ένας αστροναύτης θα χρειαστεί οπωσδήποτε διαστημική στολή, προκειμένου να περπατήσει στην επιφάνειά του. Λόγω της αραιής ατμόσφαιρας, η ταχύτητα του ήχου είναι μικρή, και οι ήχοι δεν διαδίδονται πολύ μακριά, παρά μόλις μερικές δεκάδες μέτρα. Έτσι ο Άρης, εκτός από έρημος, είναι και σιωπηλός πλανήτης.
Η χαμηλή πυκνότητα της ατμόσφαιρας έχει και άλλες συνέπειες: οι άνεμοι δεν είναι ιδιαίτερα ισχυροί, όμως καθώς η σκόνη που καλύπτει την επιφάνεια του πλανήτη είναι αρκετά ψιλή, οι αμμοθύελλες δεν είναι σπάνιο φαινόμενο. Σε ακραίες περιπτώσεις, μπορούν να καλύψουν πολύ μεγάλο μέρος του πλανήτη.
Συχνή επίσης είναι και η εμφάνιση μικρών ανεμοστρόβιλων (dust devils) που μεταφέρουν τη σκόνη πάνω στην επιφάνεια του πλανήτη. Καθώς δεν πρόκειται για πολύ δυναμική ατμόσφαιρα, το κλίμα του Άρη είναι αρκετά προβλέψιμο και επαναλαμβάνεται σε κύκλους διάρκειας σχεδόν δυο γήινων ετών, όσο δηλαδή διαρκεί και η περιφορά του γύρω από τον Ήλιο.
Στην ατμόσφαιρα του Άρη παρατηρούνται επίσης αραιά σύννεφα διοξειδίου του άνθρακα, που εμφανίζονται πιο συχνά τη νύχτα και την αυγή, καθώς και αραιά σύννεφα από κρυστάλλους νερού όταν ο πλανήτης βρίσκεται πιο κοντά στον ήλιο και εξαερώνεται ο πάγος των πόλων του.
Λόγω της διαφορετικής σύστασης της ατμόσφαιρας σε σχέση με αυτή τη Γης και της ελάχιστης πυκνότητάς της, σε συνδυασμό με την άφθονη αιωρούμενη σκόνη, το χρώμα του ουρανού στον Άρη δεν είναι μπλε· είναι ένα κοκκινωπό ροζ που πλησιάζει κάπως σε απόχρωση το ροζ του σολωμού.

Το νερό σε υγρή μορφή δεν μπορεί να υπάρχει στον Άρη λόγω της χαμηλής ατμοσφαιρικής πίεσης, η οποία είναι λιγότερο από 1% της Γης, εκτός στα χαμηλότερα τοπογραφικά επίπεδα για μικρές περιόδους. Οι πόλοι του Άρη φαίνονται να είναι κυρίως φτιαγμένοι από νερό. Ο όγκος του παγωμένου νερού στον νότιο πόλο, εάν ψηθεί, θα είναι αρκετό για να καλύψει την επιφάνεια του πλανήτη με βάθος 11 μέτρα. Μεγάλες ποσότητες πάγου πιστεύεται ότι είναι παγιδευμένοι στην κρυόσφαιρα του Άρη. Δεδομένα ραντάρ από το Mars Express και το Mars Reconnaissance Orbiter δείχνουν μεγάλες ποσότητες πάγου και στους δύο πόλους, αλλά και στις μεσαίες περιοχές (μεταξύ ισημερινού και πόλου).
Η ΑΠΟΥΣΙΑ ΟΞΥΓΌΝΟΥ ΚΑΘΙΣΤΑ ΤΗΝ ΖΩΗ ΣΤΟΝ ΑΡΗ ΑΔΥΝΑΤΗ ΧΩΡΙΣ MHXAΕΣ ΠΑΡΑΓΩΓΗΣ ΟΞΥΓΟΝΟΥ
ΟΜΩΣ To όνειρο της μεταμόρφωσης / τροποποίησης του Άρη, έτσι ώστε να γίνει κατοικήσιμος (διαδικασία γνωστή ως terraforming- αποδίδεται στα ελληνικά ως γεωδιαμόρφωση ή γαιοποίηση) είναι ένα από τα πλέον φιλόδοξα της επιστήμης.
Με αυτό έχουν ασχοληθεί τόσο συγγραφείς επιστημονικής φαντασίας όσο και επιστήμονες όπως ο Καρλ Σαγκάν, ο οποίος σε επιστημονικό άρθρο του το 1971 είχε παρουσιάσει τη θεωρία ότι η εξάτμιση των παγωμένων όγκων στον βόρειο πόλο του πλανήτη θα οδηγούσε σε πύκνωση της ατμόσφαιρας, υψηλότερες θερμοκρασίες μέσω του φαινομένου του θερμοκηπίου και αυξημένη πιθανότητα εμφάνισης νερού σε υγρή μορφή.
Η ιδέα του Σαγκάν ελήφθη σοβαρά υπόψιν από πολλούς επιστήμονες, ωστόσο το βασικό ερώτημα ήταν το εξής: Υπάρχουν επαρκή αέρια θερμοκηπίου και νερό στον Κόκκινο Πλανήτη για να αυξηθεί η ατμοσφαιρική πίεση σε επίπεδα αντίστοιχα της Γης;
Το 2018, ερευνητές από το University of Colorado, Boulder, και το Northern Arizona Univeristy, με χρηματοδότηση της NASA, ανακάλυψαν πως η επεξεργασία όλων των πηγών και πόρων που υπάρχουν στον Άρη θα αύξανε την ατμοσφαιρική πίεση μόλις στο 7% αυτής της Γης- οπότε, πρακτικά το όνειρο της γαιοποίησης του Άρη φαινόταν πως θα παρέμενε όνειρο.
Ωστόσο, τα δεδομένα ίσως να αλλάζουν, χάρη στη δουλειά ερευνητών από το Harvard University, το Jet Propulsion Lab της NASA και το University of Edinburgh. Η κεντρική ιδέα είναι η εξής: Αντί να προσπαθείς να αλλάξεις όλο τον πλανήτη, γιατί να μην υιοθετήσεις μια πιο τοπικού χαρακτήρα προσέγγιση;


Σύμφωνα με τους ερευνητές, τομείς της επιφάνειας του Άρη θα μπορούσαν να καταστούν κατοικήσιμοι χάρη σε ένα υλικό (silica aerogel- αεροτζέλ διοξειδίου του πυριτίου) που μιμείται το φαινόμενο του θερμοκηπίου στη Γη. Μέσω πειραμάτων και μοντέλων, οι ερευνητές δείχνουν πως μια «ασπίδα» πάχους 2-3 εκατοστών από silica aerogel θα μπορούσε να επιτρέπει να περνά επαρκές φως για φωτοσύνθεση, να μπλοκάρει την επικίνδυνη υπεριώδη ακτινοβολία και να αυξάνει τις θερμοκρασίες από κάτω επαρκώς, πάνω από το σημείο τήξης του νερού- και όλα αυτά χωρίς να απαιτείται εσωτερική πηγή ενέργειας.
Το εν λόγω επιστημονικό άρθρο δημοσιεύτηκε στο Nature Astronomy. «Αυτή η τοπική προσέγγιση στο να καταστεί ο Άρης κατοικήσιμος είναι πολύ πιο επιτεύξιμη από την τροποποίηση της ατμόσφαιρας σε πλανητικό επίπεδο» λέει ο Ρόμπιν Γουόρντσγουορθ, επίκουρος καθηγητής Περιβαλλοντικών Επιστημών και Μηχανικής στο Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) και το Τμήμα Γήινων και Πλανητικών Επιστημών. «Αντίθετα με τις προηγούμενες ιδέες για να καταστεί ο Άρης κατοικήσιμος, αυτό είναι κάτι που μπορεί να αναπτυχθεί και δοκιμαστεί συστηματικά με υλικά και τεχνολογία που διαθέτουμε ήδη».
«Ο Άρης είναι ο πλέον κατοικήσιμος πλανήτης στο ηλιακό μας σύστημα πέρα από τη Γη» λέει η Λόρα Κέρμπερ, ερευνήτρια στο JPL της NASA. «Αλλά παραμένει ένας εχθρικός κόσμος για πολλά είδη ζωής. Ένα σύστημα που θα δημιουργούσε μικρές νησίδες κατοικησιμότητας θα μας επέτρεπε να μετατρέψουμε τον Άρη με ελεγχόμενο και κλιμακωτό τρόπο».
Το αεροτζέλ είναι ένα στερεό σαν το styrofoam που είναι κατά 99% αέρας- δηλαδή εξαιρετικά ελαφρύ. Μπορεί επίσης να εμποδίζει και τη μεταφορά θερμότητας, κάτι που το καθιστά πολύ αποτελεσματικό μονωτικό υλικό, και για αυτό τον λόγο χρησιμοποιείται και σε όλα τα οχήματα της NASA στον Άρη. Επίσης, είναι διάφανο, επιτρέποντας στο ορατό φως να περνά και μπλοκάροντας, όπως προαναφέρθηκε, την υπεριώδη ακτινοβολία. Το περισσότερο αεροτζέλ φτιάχνεται από διοξείδιο του πυριτίου (silica), που συναντάται και στο γυαλί. Σύμφωνα με τη σχετική έρευνα, το υλικό είναι τόσο αποτελεσματικό που θα μπορούσε να βοηθήσει στη θέρμανση ακόμα και στους σκληρούς αρειανούς χειμώνες.
Το επόμενο βήμα, σύμφωνα με τον Γουόρντσγουορθ, είναι τα σχετικά πειράματα να βγουν εκτός εργαστηρίου και να γίνουν σε πιο κοντινές στην αρειανή πραγματικότητα συνθήκες, όπως στην έρημο Ατακάμα στη Χιλή ή στις Ξηρές Κοιλάδες του ΜακΜέρντο στην Ανταρκτική.



News and Tweets...

#buttons=(Accept !) #days=(20)

Our website uses cookies to enhance your experience. Learn More
Accept !